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Guderley, Joshihara and Barish [ 1 and 21 were the first workers to present a solution to the 
problem of decay of perturbations at some distance from a finite body in a sonic flow of au 
ideal gas (i.e. nonviscous and without heat conductivity). They had to resort to numerical 
methods of integrating ordinary differential equations in order to determine completely the 

flow parameters. Using the parametric representation, Fal’kovich and Chemov [3] succeeded 
in obtaining the unknown functions in the closed appearance as well. as the self-similar 
variable in its exact form. Analogous results were also obtained by Miiller and Matschat in 

(41. 
In all the above works it was assumed that both, the body and the velocity field of tbe 

perturbed flow were axially symmetric. In the case of flows which are substantially three- 
dimensional we find, that, although the principal term of the solution governing the asymp 
totic laws of decay of perturbations remains unchanged, it requires additional correction 
terms accounting for the changes in the parameters of the medium in the direction of the an- 
gular coordinate 153. Euvrard in [6] gave the form of these corrections for the region in front 
of the shock wave. Below we construct a solution relevant to the flow behind the shock 
wave and establish the connection between this flow and the lift, which together with the 

side force act on the body. 

1. We shall assume that no dissipative processes caused by viscosity and heat conduc- 
tivity take place in the flow and, that within the approximation used, the flow is isentropic. 
Let the flow originating at infinity move with the critical velocity a+ along the z-axis of the 

cylindrical (x, r, 0)-coordinate system. Since the velocity field is vortex-free, we can pass 
directly from the Euler’s system of equations to a single’partial differential equation for the 
potential 4. We know that 
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where vX, vr and ve are the relevant velocity components, o denotes the velocity of sound, 

w is the specific enthalphy and an asterisk denotes the critical values of the gas parame- 
ters. An expression for the velocity of sound in terms of partial derivatives of the potential 
with respect to the coordinates, is obtained from the Bernoulli integral (1.2) using the equa- 
tion of state expressing the pressure p as a function of the specific volume V (or the den- 
sity p = l/V). and the specific entropy s. We have, with the required accuracy 

276 



On the threc-dimenrionoi sonic jlow of an ideal gas post o body 277 

In an adiabatic process the specific snthalphy increment is dw = Vdp, hence 

(g),=(g),(g);(g)‘=m+ (m=&(-g),) 

We note that although the stream is bisected by a shock wave f2!, the latter is a weak 
one and the associated entropy change has a higher order of smallness in comparison to 
the magnitudes which are taken into account in the approximation considered. In the follow- 
ing we shall denote by the subscript 1 the gas parameters in front of the shock wave, aad 
by 2 those behind the shock wave. By vu and v7 we shall denote the velocity components, 

normal aud tangential to the shock front. We find that, within the used approximation, two 
of the Hugoniot [7] conditions are satisfied automatically on the passage across the shock. 
According to the first of them, pressure and density are connected by an adiabatic relation 
with the accuracy of up to the second order of smallness 
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The other conditron is, that the pressure behind the shock can be expressed in terms of 
the pressure in front of the shock, using the Bernoulli integral which remains also valid 
for the flows exbibiting discontinuities. Moreover, the product of both normal velocity com- 

ponents is governed by the following equality 171: 

Pa - PI 
YnlYnn = l___ I f?z- Pl 

Using the expansion (1.3) and introducing the specific enthalphy w as an independent 
thermodynamic variable, we obtain 

@a#,~ = a*¶+ 0% - *Ifma+ w1- 2uJ.1+ -*- VI 

The last of the Hugoniot conditions requires the continuity of the tangential velocity 
component vv on paseing through the shock front. It can be replaced with the condition of 
continuity of the potential 

*=‘p1 &5) 

2. We shall seek a solution of (1.1) in the form of the following expansion: 

and we shall define the position of the shock wave thus: 

Function $boo is the integral of the approximate von K&u& equation f8] and it yields 

the laws of decay of perturbation at some distance from an arbitrary finite body in a uniform 
sonic flow. The &rock wave’ tends asymptotically to the surface of revolution [= [a - const 

It was shown rigoroualy by Fal’kovioh and Chemov in [3] that, in the ox ansion (2.11, a = 
= 4/7 and the first power index oo = - 2/7. The function j_2,, = j_2,, ( P f can be defined 

in the mixed sub- and supersonic region in front of the shock wave, with help of the follow- 
ing parametric formulas 

12q-5 
ES,,,-, f~,,=~.7’lr.jhf1211’-159--) 

where the normalization is performed so, that the limiting characteristic flow surface corres- 
ponds, in the first approximation, to e= q= 1. Behind the shock wave we have 

4X + 5 
6 = b”t w , f+, = 2; - 7-a . b’lTc’fr (126f -+ f5c - 25) (2.4) 
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According to Euvrard [9] we have 

and the values of the parametric variables are 

11, = 12”(71/13 + 12), :, = 12-l (7 f/3--12) 

Each aobaequent function f,, is obtained by solving a linear differential equation which 

may ie homogeneous or nonhomogeneous, depending on the value of 1. It can be shown that 

01 = - 4/7, while the function f_4,, = f_4,, (t) is connected with the drag acting on the 

body. The equation governing this function is homogeneous 

( df_.l, 16 
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From [S and 91 it follows that f_4,, should be identically equal to zero in the region in 
front of the shock wave, otherwise the flow velocity field would have a singularity on the 

limit characteristic surface. To obtain the form of /_4,, in the region behind the shock 

wave wa must use (1.4) and (1.5) and put, in (2.2). o,, = o. = - 2/7 and c_*,, = const. The 

first condition 

f-v,, 2 = 
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(2.6) 

requires the continuity of potential across the shock wave, while the second condition fol- 

lowa from the relationship (1.4). C ombining this condition with (2.6) yields 
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We note that the left-hand side of (2.5) is the derivative of the left-hand side of (2.7), 

with the subscript 2 of the functions f_2,, and f_4,, and the subscript s of 6 omitted. This 

yields the required integral 

E 
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Here A denotes an arbitrary constant. We can obtain the above integral more simply by 
replacing 5 with 6 according to the first formula of (2.4). Indeed, 

Condition (2.6) serves to detennine the value of the constant c_~,, . Subsequent magni- 

tude o2 in (2.1) is equal to - h/7 and f_d,,7 = f_6,7 (,“) as before. In F:q. (2.2) the parameter 

ut = ot = - 4/7, while c_~,, = const. The resulting ordinary differential equation for f_6,, 
is nonhomogeneous, since the product (df_,,,/Jt) (d2f_, ,/d[‘) enters its right-hand side 
‘IMa ia easily integrable, because the required solution o_b,7 of the corresponding homo- 

geneous equation is [51 
/ 

dl 4 
f!.,, -= B --q- (B = const) 

3. We shall now obtain the first terms of the expansions (2.1) and (2.2) which, as a 

matter of fact, to a three-dimensional flow past a finite body. Fe have shown before that 

the functions 4_2,, . (6_4,, and 4,6,, allow us to construct only those gas flows, which 

possess axial symmetry. To simplify the required solution even more, we shall expand it 

into a Fourier series, retaining only the terms containing first harmonics. We have 

The parameter Wg can be found from the condition that the velocitv components have nu 

singularities on the limit characteristic surface. This imp1ie.s that the function t!) 
u’3 

mnst 
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be regular when c + 1. Euvrard has shown in [61 that the latter requirement implies that 

OS’ - 1 and hence al = o1 + l/7 = - S/7. This result can be obtained by another method 

utilizing the relation between the spatial type perturbations and the lift, acting together 

with the side force on the body. 

Let us denote the lift by F,, and the side force by F, and represent them by 

F,= F$+ F,,‘, Fz = PI’ + F,’ 

Magnitudes F, ’ and F, ‘are connected with the loss of impulse by the gas in the vortex 

wake which is always formed behind the body [7]. The presence of the terms F,,“and Fa” 

in the right-hand sides of (3.2) is caused by the fact that they- and z-components of the 

momentum can be transported to infinity not only by the vortex wake but also by means of 

the system of wavea spreading from the body into the external stream. In order to find Fr” 

and F, “we shall construct a control cylindrical surface around the body, its radius equal 

to r and with its generators parallel to :he x-axis. This will enable us to utilize the integral 

of the tensor of the impulse flux density taken over this surface 17’1 in calculating the forces. 

It can be shown that major contribution to this integral is made by the terms proportional to 

the pressure, while the contribution of the terms incorporating the velocities of the gas part- 

icles will be smaller by an order of magnitude. Thus 

+co ax +Q3an 
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Expanding the pressure in terms of the specific enthalphy and applying the Bernoulli in- 

tegral to the expression obtained we find, that 

Let now r + 00. To retain F,,” and Fz” finite and different from zero we must put oj I - 

- 1, since at this value of fr) 

limit characteristic surface 16 . “i 

as we said before, the solution has no singularities on the 

Let us derive an explicit expression for $_t satisfying 

(3.4) 

Only first and second derivatives of the required function are present in the above expres- 
sion, therefore a general integral dependent on the constants H, and H, can be written down 
at once as 

This expression can be considerably simplified by passing to the parametric variables. 
Ry (2.3) we have, in front of the shock wave, 

d’f-.,, ;7 E=_28.3.5(4~4- ‘1-3). 
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Denoting the arbitrary constants by H,, and HzI, we have 

9-1 = Hi, + 1Jrr Vl 

For the region behind the shock wave we obtein, in the analogous manner, 
(3.5) 

d=f_.,, 72 x _ 25 . 3 . 5 . b% (452 + 6 - dE”--4’3‘_ 3) df_v, 16 
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with different values for the constants If,, hd H,,. We shall first show that the value 

H tt E 0 must be chosen in (3.5). Indeed, otherwise both, radial and angular velocity compo- 

nents tend, in the region in front of the shock wave, to infinity as r -2 when the x-axis is 

approached at any point. If N,, = 0, we can easily see that vr- ve- H,, 1~(-“~. The lon- 
gitudinal velocity component vx - H 2 l 1x1 -9’2 r, also exhibits no singularities. In the re- 

gion behind the shock wave v, and ve exhibit a singularity noted previously, when H,, f 0. 
In this region however, we cannot impose the requirement of the absence of singularities 
in the flow velocity field near the axis r = 0, since we have a vortex wake behind the body, 
where the solution (3.6) is invalid. On the outer boundary of the vorticity region the solu- 
tion (3.6) should be correlated with a solution allowing for the dissipative processes taking 
place inside the wake. Landau and Lifshits [7] used this idea in connection with the in- 
compressible fluid motions. In [ 101 au analogous method was used to investigate a flow of 
a viscous, heat conducting gas moving with sonic velocity at infinity, and an integral was 
obtained describing the velocity field in the wake at large distances from the body. Without 
going deeper into the matter we shall indicate that the results of [IO] readily yield the re- 
lationship between the products of Hi, and the constants c 

Y 
and cz from the right-hand 

sides of (3.1). and the magnitudes governing the laws of degeneracy of perturbations within 
the wake. 

Let us now turn to the boundary conditions which should hold on passing across the 
front of the shock wave. Inserting (2.1) and (2.2) into (1.5) and taking into account the forv 
of j-t given by (3.1) we have, in terms of the parametric variables, 

H rl’ls - H,, f ri,,L - &a+, 
df-%,l df+ 2 

-dF - --& 

The second condition follows from (1.4). To calculate vn2 and vnl we must know the 

expression for the projection of the unit vector n normal to the shock front, on the x-axis. 
The other components of II are not required in this approximation. Elementary manipulations 

yield 

n ==I x - a/t. (?m.)“ .&r [r-‘lr + E_,~,T-‘~~ + r/,tc~y,r-U17 - r/r d+, (cv cos 8 + cz sin t3) ;-“‘I] 

from which we find 

dip-t 1 

aI + -----+_fJ_,,, 

af 
.i!!&+!%&+%& (3.3) 

Condition (3.7) enables us to determine the constant D appearing in (3.3). for the lift and 
the side force, We have 

From this we conclude that the removal of they- and z-components of the momentum to 
infinity resulting in the fact that the contributionof the perturbations of the outer flow to- 
wards the establishment of transverse forces is not nil. is connected with obligatory ap- 
pearance of the singularities in the vr and ve velocity components at the points lying on 

the positive part of the z-axis. These singularities disap ear when H, 
and Fa P 

- 0, but then Fy” 
“also become equal to zero. Using the results of 101 we can s ow, that the total a- 

force acting on the body in the direction perpendicular to the incident flow, is also equal to 

zero. When H, 2 = 0. the wake is axisymmetric in the first approximation, in spite of the fact 

that, as we have shown, the perturbations in the flow may be three-dimensional. To conclude 
the solution of the problem, we obtain from (3.8). the constant 

d A,/, = _ 2-mi~.3-‘11.~-9.iS (2 _ d3f/* [H?_!‘Is (2 - VS) - ~Z*&*] 
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